	1. A. A.	1000			19	NA	VIG	GAT	ION	I LO	G						AN THE		
Alreafs Number	N 14	Notes	_																
Alt to climb 8 34																			
Alt to des	cend 10																		
Cruise RF	PM 14						_												
											-		_	- 0	-	2011/2		1.004	
						-						_							
Check Points (Fixed)	VOR	VOR Ident Courts Free (Route) 32	Alitadi	Wind	CAS		T		сн	Dist.	63	Time Off GPH		GPH	Airport & ATIS Advisories				ories
	Referret			Die, Vet.	12	TC	TH	MH		Lep	Ert.			14	Departure			Distinstion	
2	Free				12	-1. 4R	÷Ē.	+ Dec		Rens	-	ETE	ETA	fiel			ATISC	ede	
and a state of the second	32			Temp.	TAS	WCA	Ver.	_			Act	ATE	ATA	Rom.			Caling Visibil	i& iπγ	
Departure	e 32		-	15 15	15	1	28	29	31	17	16	9		21			Wirs	đ	
тос	32	2	5	15	13	16	2	30			<u>.</u>					-0.04	Altimo	12.0	_
nond	32		_	15 15	14	1	28	29	31	19	16	20	-	22			Appro	sch	
4	_32	3	7	15		16	2	30					_				Burnz	*	
	32	3	3 -	15 15		1	28	29	31	19	16	20		22		Time Chock,			
4	32	<u> </u>	7		14	16	2	30		10			_	22		An	port Fre	quencio	
4	32	2 7		15 15	14	16	28	29	31	19	16	20	-	22	22		-	22	
	22			15	14	10	20	30	_	10	16	20	-	22	ATIS	22	-	ATIE	22
4	32	3	7	1515	14	16	20	20	31	19	10	20	-	- 22	Grad	22	+	Aero	33
	32	1	-	1515	15	1	29	29	2	10	16	20		22	Toyer	33	-	Toute	33
4	32	3	7	15	14	16	20	30	31	19	10	20	-		Dea	33	-	Great	33
	32			15 15		1	28	29		19	16	20		22	CTAF	33		CTAF	33
	32	73	7	15	14	16	2	30	31				-		F\$S	33	-	FSS	33
T.O.D	32		V	15 15		1	28	29	21	18	16	11		22	UNICOM	33	U	NICOM	33
Arrival	32	3	6	15	14	16	2	30	31						Freid Eige,	5		Field Elow	6
	32							Tee	:06: }	23		24		25	Block	In			Log Time
Fléght Plan ad	nd Weather 1	og on Rev	erse Side		200-		- 257								Block	Ovt			
														26					
														27					

- 1. Plot and note True Course with plotter and sectional chart
- 2. Note Magnetic Variation on sectional chart (depicted by magenta-dashed "Isogonic" line)
- 3. Compute Magnetic Course (True course ± Magnetic Variation)
- 4. Identify and plot Checkpoints along the route of flight
- 5. Note departure Field Elevation (found in Chart Supplement)
- 6. Note arrival Traffic Pattern & Field elevation (found in Chart Supplement)
- 7. Select Cruise alt Based off magnetic course (14 CFR 91.159)
- 8. Calculate Altitude to climb (Cruise altitude departure Field elevation)
- 9. Calculate TOC ETE divide "altitude to climb"(8) by climb rate in POH, cross-verify time with T.T.C.
- 10. Calculate Altitude to Descend (cruise alt arr. Traffic Pattern Alt)
- 11. Calculate TOD ETE divide alt to descend (10) by desired descent rate (500fpm) to get mins
- 12. Calculate CLIMBOUT CAS convert 67KIAS to CAS using POH
- 13. Calculate CLIMBOUT TAS using CAS above and Forecast (daily forecast, prog chart, AWC...)
- 14. Obtain Cruise Performance (TAS, RPM, GPH) using POH Cruise performance chart
- 15. Copy Winds aloft data
- 16. Calculate Groundspeed and WCA Using E6B
- 17. Calculate Distance Traveled Using E6B and plot this point on sectional
- 18. Calculate Distance Traveled Using E6B and plot this point on sectional
- 19. Measure remaining distances using plotter from sectional
- 20. Calculate Estimated time en route using E6B
- 21. Calculate Fuel consumed at full throttle AND add ground fuel as per POH (8.4 GPH in 152)
- 22. Calculate Fuel consumed for each leg given POH cruise setting (14)
- 23. Add up total distance logic-check with plotter
- 24. Add up total time Logic check with distance and speed
- 25. Add up total Fuel CONSUMED Logic check with total flight time
- 26. Note Fuel Reserve (14 CFR 91.151, HAA SOP, Personal minimum)
- 27. Add fuel *CONSUMED* with fuel reserve to get total fuel *to carry*
- **28.** Calculate **True Heading** by adding/subtracting WCA from TC
- 29. Calculate Magnetic Heading by adding/subtracting Mag. Var. from TH
- 30. Note magnetic Deviation from Aircraft compass deviation card
- 31. Calculate Compass Heading by adding/subtracting Deviation from TH
- 32. Note En-route frequencies to use Ie: Center/app/dept, possible VOR's and radials
- **33.** Note departure and arrival airport Frequencies.
- 34. Notes: Airport Sketch, TP Directions, Entry Plan, FBO, Lights are available, NOTAMS

NAV LOG BY THE NUMBERS

Glossary

T.C.	True Course	Path over ground compared to TRUE north
M.C.	Magnetic Course	Path over ground compared to MAGNETIC north
T.H.	True Heading	T.C. with wind correction accounted for
M.H.	Magnetic Heading	TH With magnetic compass accounted for
C.H.	Compass Heading	This is <i>THE</i> heading we fly in the airplane
M.V.	Magnetic Variation	The angular difference between True North and Magnetic North.
M.D.	Magnetic Deviation	Electrical wires create small magnetic fields which interfere with our compass reading, this error we measure, and call M.D.
W.C.A	Wind Correction Angle	The angle we need to turn into the wind in order to fly in a straight line. Imagine a boat trying to cross a river flowing quickly
	Field Elevation	Elevation in feet that an airport is above sea level.
T.P.	Traffic Pattern	Usually 1,000 ft above our field elevation, however, some older airports are only 800 AGL. refer to chart supplement
	Cruise Altitude	Must comply with 91.159. Pilot can also look at winds aloft, aircraft cruise performance to determine optimum altitude
	Altitude to climb	Cruise altitude - our field elevation = the actual amount of altitude we will climb, example: if we cruise at 6,500, but we
	Altitude to descend	departed from a field elevation of 1,000, we are only climbing an additional 5,500 ft!
E.T.E.	Estimated Time En-route	
I.A.S.	Indicated Air-Speed	Airspeed read off our airspeed indicator, it's a good indicator, however, it suffers from many errors.
C.A.S.	Calibrated Air-Speed	This is IAS corrected for Pitot tube position error. Imagine blowing air through a straw. If we turn the straw, less air enters
T.A.S.	True Air-Speed	Speed at which one flies past clouds. This speed corrects for differences in air pressure and temperature
G.S.	Ground-Speed	Speed relative to the ground. TAS-wind=groundspeed
R.P.M.	Rotations Per Hour	RPM setting is chosen based on fuel economy and sometimes is chosen based on engine age (New engine = lower rpm)
G.P.H.	Gallons Per Hour	Obtained from our POH cruise section. This tells us at a given RPM setting & altitude, what will our fuel burn rate be
T.T.	Totaling Up	Always "logic-check" our total numbers. Also cross-verify with a forflight or skyvector calculation etc
	Fuel Consumed	Always ask, Do these numbers make sense? Verify numbers approximately with calculator / Foreflight / Skyvector.
	Fuel Reserve	Fuel actually burnt.
	Fuel to Carry	Fuel we want to NOT burn, but will still carry in case of an EMERGENCY, also personal minimums, alternate fuel, etc
		Fuel we will actually burn + fuel reserve

F.A.Q. & Basic Concepts

Course v.s. Heading?

Course is what we would *like* to fly over the ground, Heading is where our nose needs to point *in order to* achieve a specific course over the ground

IAS v.s. CAS v.s. TAS v.s. GS?

Remember our Speed Pyramid:

<u>Note:</u> Airspeed calculations *depend* on those below Refer to <u>This Document</u> for greater explanation

How do we calculate TAS in the *future*?

To calculate TAS we need Pressure Altitude and temperature, we use weather <u>forecasts</u> like winds/temperature aloft forecasts, Foreflight "DAILY" forecasts, Prog charts, and AWC forecasts

How does one choose checkpoints?

Checkpoints should be within a *reasonable* distance from one another, and a *reasonable* distance from the centerline of our course. -- "*reasonable*" depends: low visibility? Then pick things closer together. A good ballpark average (usually pretty good distance) is at most 15NM, however practically speaking, points will almost always be a bit more or a bit less than this.

How does one determine ETE to TOC & from TOD?

Since we are *climbing* to our "T.O.C" point, we *reach* this point only when we arrive on our altitude. So our first step to determine where our TOC is, is to determine how *long* it will take us to climb to altitude. Then, when we know how long it will take us to climb up to altitude, we can find our ground-speed during this time, and we can use our speed and time to determine how far we will fly; thus giving us a distance we can plot on our sectional as our TOC *point*.

How does one determine Full Throttle Fuel burn rate (GPH)?

During our first leg of our nav log, we will be climbing out (to our TOC of course). Whilst climbing out, we will have our nose up and our throttle full. During this time, we will not be burning the same amount of fuel as in cruise (when we *reduce RPM and lean*). So, We need to find the rate at which we burn fuel *during* this high power time. Before we calculate, logically, we know when we climb at *full* throttle, our fuel burn rate would be *higher* than at cruise. If that is unclear, a review of engine system is in order (PHAK ch 7).